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Spectral Reflectance as a Covariate for Estimating
Pasture Productivity and Composition

Alison B. Tarr,* Kenneth J. Moore, and Philip M. Dixon

ABSTRACT estimating unsampled points for varying sampling inter-
vals and densities was calculated (Webster et al., 1989).Pasturelands are inherently variable. It is this variability that makes

The reflectance data measured in the Webster et al.sampling as well as characterizing an entire pasture difficult. Measure-
ment of plant canopy reflectance with a ground-based radiometer (1989) study was optimal in the sense that it was a spatially
offers an indirect, rapid, and noninvasive characterization of pasture correlated variable that was rapidly and densely col-
productivity and composition. The objectives of this study were (i) lected. In this study, data of multispectral canopy reflec-
to determine the relationships between easily collected canopy reflec- tance were used for similar reasons.
tance data and pasture biomass and species composition and (ii) to Multispectral reflectance measured with hand-held
determine if the use of pasture reflectance data as a covariate im- radiometers has been used to estimate many plant pa-
proved mapping accuracy of biomass, percentage of grass cover, and

rameters of interest. Reflectance has been correlatedpercentage of legume cover across three sampling schemes in a central
with plant greenness in peanut (Arachis hypogaea L.)Iowa pasture. Reflectance values for wavebands most highly corre-
(Nutter, 1989; Aquino et al., 1992) and in maize (Zealated with biomass, percentage of grass cover, and percentage of
mays L.) (Ma et al., 1996). Reflectance measurementslegume cover were used as covariates. Cokriging was compared with

kriging as a method for estimating these parameters for unsampled were also found to be successful estimators of biomass
sites. The use of canopy reflectance as a covariate improved prediction in alfalfa (Medicago sativa L.) (Mitchell et al., 1990),
of grass and legume percentage of cover in all three sampling schemes peanut (Nutter and Littrell, 1996), and potato (Solanum
studied. The prediction of above-ground biomass was not as consistent tuberosum L.) (Bouman et al., 1992). Seasonal biomass
given that improvement with cokriging was observed with only one changes in tallgrass prairies were modeled by the nor-
of the sampling schemes because of the low amount of spatial continu- malized difference vegetation index (NDVI) along with
ity of biomass values. An overall improvement in root mean square

several other environmental variables (Olson and Coch-error (RMSE) for predicting values for unsampled sites was observed
ran, 1998). Light reflectance before anthesis may be ablewhen cokriging was implemented. Use of rapid and indirect methods
to predict grain yield in corn (Ma et al., 1996), canopyfor quantifying pasture variability could provide useful and convenient
reflectance measurement at pod setting stage in soybeaninformation for more accurate characterization of time consuming param-

eters, such as pasture composition. aided in early prediction of soybean [Glycine max (L.)
Merr.] yield (Ma et al., 2001), and a good correlation
was found between NDVI and millet total dry matter
at harvest (Lawrence et al., 2000).Sampling is the researcher’s best way to learn about

Reflectance indices involving different wavelengthsa population. When a pasture is considered to be a
can also be used to discriminate between weed and croppopulation, the task is to determine where to sample
species (Vrindts et al., 2002). Discriminant analysis inand how to assess the true variability as accurately as
this study also resulted in 94% correct classification ofpossible. With only a limited number of observations
broadleaved plants in test datasets of broadleaved plantsattainable because of time and labor constraints, interpo-
and grasses (Vrindts et al., 2002).lation is necessary to estimate values at unsampled points.

Measuring pasture variability through the use of aMatheron’s theory of “regionalized variables” (Math-
ground-based multispectral radiometer can be per-eron, 1971) reported that field variables can be spatially
formed quickly, nondestructively, and inexpensively.correlated, or coregionalized. Geostatistics is the field of
Consequently, canopy reflectance data on a dense gridstudy that models spatial variability and is used to predict
can be easily obtained. This dense data collection can beunknown values in space (Journel and Huijbregts, 1978).
capitalized on through the use of geostatistics. Kriging isConsequently, spatial correlation within pastures is an
a method of interpolation used when a variable displaysopportunistic reality. Webster et al. (1989) capitalized
spatial autocorrelation. Because reflectance values areon this observation by designing a sampling scheme for
spatially correlated (Webster et al., 1989), kriging canground-based radiometry measurements in both spe-
be used to predict reflectance at unsampled points. Co-cies-poor and species-rich grassland and winter barley
kriging is also an interpolation method used where there(Hordeum vulgare L.). By fitting a semivariogram to
are two or more spatially interdependent variables. Of-radiation reflectance data sets, the error associated with
ten, cokriging is used when one or more other properties
have been extensively sampled in comparison to the

A.B. Tarr, USDA-NASS, Des Moines, IA 50309; K.J. Moore, Dep. variable of interest (Oliver, 1987). Ideally, the densely
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able, or subsidiary variable, is measured more cheaply*Corresponding author (Alison_Tarr@nass.usda.gov).
and quickly than the property of interest, or target vari-
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spirit level mounted on the support pole of the radiometerable. Therefore, canopy reflectance may serve as a co-
ensured that the radiometer sensors were parallel with thevariate and noninvasively provide valuable and inexpen-
pasture canopy. There were few clouds, a sunny sky, andsive information as a surrogate for prediction of other
minimal wind on the date of measurement.plant parameters of interest.

On 11 June 2001, species composition was evaluated. UsingIn this study, cokriging methods were compared with the Daubenmire canopy coverage method (Daubenmire, 1959),
kriging methods for predicting measured plant parame- we ranked species within a 1-m2 quadrat according to coverage
ters of interest. The objectives of this study were (i) abundance. Immediately following the ranking, the 1-m2 quad-
to determine the relationships between easily collected rats were harvested with a mechanical hedge trimmer and cut
canopy reflectance data and pasture biomass and species as close to ground level as possible. Above-ground biomass

was placed in forced-air drying ovens at 60�C for 48 h andcomposition and (ii) to determine if the use of pasture
then weighed to determine biomass for each quadrat. Eleva-reflectance data as a covariate improved mapping accu-
tion data were recorded with a Leica System 500 real timeracy of biomass, percentage of grass cover, and percent-
kinematic (RTK) system (Leica, Switzerland) and slope dataage of legume cover across three sampling schemes in
were calculated from this by ArcView 3.2 Spatial Analysta central Iowa pasture.
(ESRI, 1996). Geostatistical analyses were performed by Arc-
View 8.1 ArcGIS Geostatistical Analyst (ESRI, 2001).

MATERIALS AND METHODS

The experiment was conducted during June 2001 at the Sampling Schemes
Iowa State University Rhodes Research Farm (41�52� N,

Three different sampling patterns of n � 30 were created93�10� W) in central Iowa. The field of study was a 0.42-ha
from the original dense sampling grid (n � 116). The samplingnongrazed, grass–legume pasture. The dominant species included
schemes were a grid pattern, a triangular pattern, and a ran-smooth bromegrass (Bromus inermis Leyss), reed canarygrass
dom scheme. The sampling schemes are shown in Fig. 1. Be-(Phalaris arundinacea L.), Kentucky bluegrass (Poa pratensis
cause the sampling schemes were created from the originalL.), birdsfoot trefoil (Lotus corniculatus L.), and cicer milk-
sampling grid, there were some restrictions on the arrange-vetch (Astragalus cicer L.). While there was mechanical re-
ment of the patterns. The grid pattern was a rectangular gridmoval of vegetation in early spring each year, the cool season
with 6-m intrarow and 12-m interrow separation distances.grass-legume pasture had not been grazed in six years during
The sampling scheme originated on the west end of the pasturea rotational grazing study. To avoid disrupting grass–legume
and because of the specified sample size, sampling density onbalance, the pasture did not receive any fertilizer from 1996
the east end of the pasture was less dense. For similar restric-to 2001. As an indication of field topography, the pasture site
tion reasons, the triangular scheme is more dense on the eastincluded topographically distinct summit, sideslope, toeslope,
end of the pasture. The triangular pattern was not equilateral;backslope, and opposite summit landscape positions. Slope
the triangles were formed with a base length between pointsranged from approximately 1 to 9� and elevation ranged from
of 6 m and a side length of 19 m for nearly all of the pasture296.6 to 303.0 m above sea level.
and 12 to 13 m on the extreme east end of the pasture. Lastly,A dense sampling grid consisting of 116 points was devised
a random number generator was used to produce a samplingfor the pasture. Sampling points were arranged in a triangular
scheme with size n � 30 from the original 116 sampling pointsgrid with inter- and intrarow separation distances of 6 m. To
for the random sampling scheme.obtain data from samples located closer than 6 m, an additional

Because plant measurements were taken at each of thepoint was sampled within each row at randomly chosen 1- or
original 116 sampling points, a relatively large validation set2-m separation distances. An earlier study of the pasture site
was available. Eighty-six points were used as an independentindicated short-range variation in soil characteristics such as
validation set for the n � 30 sampling density.soil P, K, pH, and organic matter (Tarr et al., 2003). As a result,

this short-range variation in soil samples was investigated to
Equations and Data Manipulationobtain a more reliable experimental semivariogram model

(Burgess and Webster, 1980; Kravchenko and Bullock, 2002). When analyzing reflectance results, the normalized differ-
Each sampling point was georeferenced by GPS. ence vegetation index was defined as:

Canopy reflectance was measured at each of the 116 points
on 8 June 2001. Grasses and legumes were in late vegetative–

NDVI �
NIR � red
NIR � red

.early reproductive stages. Canopy reflectance was measured
with a handheld portable multispectral radiometer (CROP-
SCAN, Inc., Rochester, MN, model MSR87) over the center Two variants of NDVI were calculated with different red

wavebands. NDVI1 was calculated with reflectance at 610 nmof each 1-m2 quadrat. Reflectance was measured at eight wave-
bands centered at: 460, 510, 560, 610, 660, 710, and 760 nm and NDVI2 was calculated with reflectance at 660 nm.

Kriging and cokriging were performed by the Geostatisticalas well as a far infrared (IR) band from 1550 to 1750 nm.
Bandwidths were approximately 10 nm for wavebands in the Analyst extension in ArcView 8.1 (ESRI, 2001). Adequacy

of the chosen variogram models was tested by cross-validationvisible light and near infrared (NIR) regions (460–760 nm
wavebands). (Vauclin et al., 1983; Warrick et al., 1986). In a cross-validation,

each point in the sampling scheme is removed singly and itsThe circular field-of-view for the radiometer was matched
as closely to the size of the 1-m2 quadrat as possible. Reflec- value is predicted by kriging the remaining data. The resulting

RMSE of the cross-validation process was examined, and thetance was averaged over the area measured because the diame-
ter of the field-of-view was equal to one half the height of the variogram model with the lowest RMSE was selected (Vauclin

et al., 1983; Heisel et al., 1999). Skewness results indicatedradiometer sensor above the plant canopy. Two radiometer
measurements were made in rapid succession and averaged that not all the data were normally distributed. To improve

normality, the reflectance data for the following covariatesat each of the 116 points. Measurements were taken between
1130 and 1400 h daylight time to minimize the effects of sun was log-transformed: 660 nm, the far IR band, and the NIR/

Red1 ratio. In addition, the sin�1 transformation was imple-angle on incident radiation (Guan and Nutter, 2001). A bubble
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Fig. 1. Three sampling schemes at n � 30 density.

mented for the NDVI1 and NDVI2 indices. Data were re- the most abundant grass. Absence of each species was
ported on the nontransformed values. found at one or more of the quadrats, as indicated by

For both kriging and cokriging and for each sampling the minimum percentage of cover. However, grass was
scheme, the root mean square error was calculated as: always present within the quadrats. The large CVs for

species composition indicated the high variability in spe-
RMSE � �1n �

n

i�1
[z(si) � z*(si)]2�

0.5

cies occurrence throughout the pasture. From a sam-
pling perspective, this known variability is of interest

where n is the number of sample sites in the validation set, z(si) because it is important that a sampling technique can
are the observed values, and z*(si) are the predicted values. identify this variability in its resulting map. Furthermore,Relative reduction in RMSE was defined by:

management decisions are made based on this map. In
100(RMSEk– RMSEck)/RMSEk addition, weed species were not particularly prevalent.

The primary weed species were yellow nutsedge (Cyperuswhere RMSEk and RMSEck are the root mean square errors
esculentus L.), common dandelion (Taraxacum officinaleof kriging and cokriging, respectively (adapted from Zhang

et al., 1992). Weber), and yellow rocket (Barbarea vulgaris R. Br.).
The degree to which canopy reflectance values are

spatially correlated with the plant parameters of interestRESULTS
is called coregionalization. Although statistical correla-

Statistical Data Analysis tion does not imply spatial correlation, the dense data
set in this study does suggest a baseline for spatial rela-Summary statistics of pasture biomass and species
tionships to exist among the plant parameters. The rela-composition values for the initial, dense grid (n � 116)
tionships between reflectance values and productivitysampling scheme are presented in Table 1. Biomass had

a large range in values; however, it had a relatively low and species composition are shown in Table 2.
CV. On average, the pasture was composed of more The results of the large data set indicated several
grass than legume species, with smooth bromegrass as significant relationships between measured plant pa-

rameters of interest and reflectance values. For exam-
Table 1. Descriptive statistics of measured plant parameters for ple, values of r � 0.40 were found between biomass and

116 sampling points.† NDVI1, NDVI2, NIR/Red1 ratio, and NIR/Red2 ratio
Mean SD CV Minimum Maximum (Table 2). percentage of coverage of grass was corre-

Biomass, g DM m�2‡ 463 91.3 20 226 704 lated with reflectance in the far IR band and at 660 nm
Grass, % 85 16.1 19.0 33.9 100.0 (values of r � 0.29). Also, percentage of coverage ofSmooth bromegrass, % 49 30.6 62.6 0 97.5

legume was correlated most highly with reflectance atKentucky bluegrass, % 7 8.6 118.4 0 39.5
Reed canarygrass, % 29 39.2 137.1 0 100.0 660 nm, 460 nm, and at the far IR band (values of r �
Legume, % 14 16.1 116.5 0 64.5 |–0.27|). These relationships were capitalized on by co-Birdsfoot trefoil, % 11 13.1 119.0 0 54.8
Cicer milkvetch, % 3 8.7 310.4 0 51.5 kriging. The spectral wavebands most highly correlated
Other, %§ 2 4.0 264.2 0 27.7 with the plant parameters of interest were used as co-
† Samples measured on 1-m2 quadrats. variates.
‡ Biomass is above-ground plant material, percentage of plant cover as- The highly significant negative correlation (�0.97)sessed by the Daubenmire canopy coverage method (Daubenmire, 1959).
§ Indicates weed species. between percentage of grass cover and percentage of
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Table 2. Partial correlation matrix among plant and canopy reflectance parameters for 116 sampling points.

Grass Leg. Bio. 460 510 560 610 660 710 760 Wide NDVI1 NDVI2 NIR/Red1 NIR/Red2 FIR/Red1 FIR/Red2

Grass, %†
Legume, % �0.97‡
Biomass �0.27 0.33
460 nm 0.25 �0.28
510 nm 0.19 �0.22 �0.21 0.96
560 nm 0.61 0.73
610 nm 0.20 �0.23 �0.38 0.80 0.91 0.75
660 nm 0.29 �0.31 �0.40 0.74 0.81 0.38 0.88
710 nm 0.65 0.74 0.94 0.79 0.46
760 nm 0.30 0.40 �0.51 0.39
Far IR 0.30 �0.27 �0.32 0.23 0.24 0.20
NDVI1 �0.19 0.19 0.43 �0.37 �0.47 �0.64 �0.86 0.86
NDVI2 �0.23 0.23 0.40 �0.39 �0.46 �0.59 �0.87 0.86 0.99
NIR/Red1 0.43 �0.35 �0.47 �0.65 �0.84 0.85 0.98 0.95
NIR/Red2 �0.19 0.20 0.40 �0.40 �0.48 �0.62 �0.86 0.85 0.98 0.97 0.99
FIR/Red1 �0.65 �0.67 �0.35 �0.61 �0.66 �0.37 0.28 0.71 0.51 0.51 0.55 0.58
FIR/Red2 �0.65 �0.66 �0.19 �0.62 �0.79 �0.24 0.50 0.63 0.69 0.72 0.72 0.77 0.95

† Grass and legume measured by canopy coverage method (Daubenmire, 1959), biomass is above-ground plant material in g DM m�2, nm is nanometer,
wide IR band is 1550-1750 nm, NDVI is normalized difference vegetation index calculated with Red1 (610 nm) or Red2 (660 nm), NIR is near infrared
(760 nm), FIR is far infrared (1550–1750 nm).

‡ The critical value for the 5% two-sided significance test is 0.18; correlations less than 0.18 are omitted.

legume cover indicated that the occurrence of the two tries a series of lag values, with their size increasing in
vegetation classes was inversely related. In addition, a geometric sequence. Geostatistical Analyst then looks
because of the fairly narrow spectrum of wavebands through all the lags and finds the lag and set of variogram
used and relatively wide spectral resolution (i.e., band- parameters that have the “best fit,” or smallest weighted
width), the reflectance values in the visible light region least squares (J.M. Ver Hoef, Alaska Department of
(400–700 nm) exhibited strong colinearity as did the Fish and Game, personal communication, 2002).
ratios using the two wavebands of red light (Table 2). The three plant parameters of interest, above-ground

biomass, percentage of grass cover, and percentage of
Geostatistical Data Analysis legume cover, were undersampled compared with the

canopy reflectance readings. This is the situation whereInterpolation is necessary to map a variable of interest
cokriging is most useful. Because of the ease of collect-at the ground from a sample of that variable. Kriging
ing dense, rapid, and georeferenced canopy reflectancedoes this optimally in the sense that it estimates unsam-
data, its spatial relationship with the three plant parame-pled values with minimum variance. Both the theory
ters was explored. In this 0.42-ha pasture, canopy reflec-and application of kriging are described in depth by
tance at 116, 1-m2 quadrats was measured. Conse-Journel and Huijbregts (1978) and McBratney and Web-
quently, the ratio of sampling intensities of reflectancester (1983a). We investigated the value of using one or
to the other plant parameters was nearly 4:1 for the n �more reflectance values or indices as a covariate for
30 scheme (Fig. 2).cokriging. Mapping accuracy of kriging the plant param-

To apply cokriging, it was necessary to model semi-eters of interest was compared with that of cokriging the
variograms for each plant variable separately as wellplant parameters with reflectance values as a covariate.
as cross-variograms for all pairs of canopy reflectanceThe pasture of study was oriented mostly in one di-
and plant parameters measured at the same locationmension, and there were insufficient sample pairs of the
(McBratney and Webster, 1983a, 1983b; Vauclin et al.,plant parameters for the n � 30 sampling scheme to
1983; Triantafilis et al., 2001). The correlations shownobtain well-structured directional semivariograms (Trang-
in Table 2 were also examined (Chien et al., 1997). Proofmar et al., 1986). Therefore, it was assumed that all semi-
of some level of coregionalization between canopy re-variograms were isotropic. Lag distances ranged from
flectance and the three plant parameters of interest was3 to 16 m with the majority of values being 8 m. Lag
important for further cokriging steps.distances were autocalculated by the ArcView 8.1 Geo-

statistical Analyst extension (ESRI, 2001). This method One, two, and three covariates were examined to

Fig. 2. Map of plant sampling points and spectrometer covariate points.
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determine if using more than one covariate improved short-range variation and local detail in their depiction
of the variability of the three plant parameters. How-cokriging prediction accuracy (McBratney and Webster,

1983a). One covariate, sin�1 transformed NDVI1, was ever, both methods resulted in similar patterns of vari-
ability for the plant parameters. Comparable results haveoptimal for biomass as there was difficulty computing

the covariance matrix for two and three covariates in been found in the soil literature for topsoil silt cokriged
with subsoil silt and sand as covariates (McBratney andthe grid and triangular schemes. Cokriging with the log-

transformed far IR and log-transformed 660-nm wave- Webster, 1983a), NaHCO3–extractable P cokriged with
25% HCl-extractable P (Trangmar et al., 1986), andbands was optimal for cokriging with percentage of grass

cover. Three covariates, log-transformed 660 nm, 460 nm, NO3 cokriged with soil EC (Zhang et al., 1992). Im-
proved local detail of the cokriging maps was due toand the log-transformed far IR band, were optimal for

percentage of legume cover. Covariate selection was de- the finer sampling grid of the covariate(s), canopy reflec-
tance (McBratney and Webster, 1983a). Representativetermined on the basis of correlation with the plant pa-

rameter of interest (Table 2). The minimization of krig- maps of these observations are shown in Fig. 3. The
actual differences resulting from these visual variancesing RMSE for cross-validation sets aided in determining

which combination of covariates was optimal. will be analyzed quantitatively.

Sampling Scheme ComparisonDISCUSSION
On the basis of the design and results of this experi-Map Results

ment, it cannot be concluded which of the three sam-
Kriging vs. Cokriging pling schemes is optimal for producing accurate maps

of variability for vegetative characteristics. Each of theIn general, a visual variance existed between the kriged
and cokriged maps. The cokriged maps exhibited more schemes used in this study was just one depiction of a

Fig. 3. Representative comparisons of kriged (OK) and cokriged (Co-K) maps for a) n � 30 grid sampling scheme, biomass, b) n � 30 triangular
sampling scheme, percentage of grass and c) n � 30 random sampling scheme, percentage of legume.
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grid scheme or a triangular scheme or a random scheme dicted and actual values also decreased with cokriging
in the pasture. Multiple scenarios of each scheme should biomass in the triangular scheme. However, the very
be analyzed further to answer this question. General low correlation between predicted and actual values for
conclusions about the sampling schemes will be dis- kriging biomass in the triangular scheme indicated that
cussed after examining them quantitatively. the spatial autocorrelation was difficult to model. When

the target variable has a high nugget variance, gains
from cokriging are not likely (Webster and Oliver, 2001).Quantitative Results

Figure 4 illustrates the reduction in RMSE of predic-
Kriging vs. Cokriging tion due to cokriging as a function of the absolute corre-

lation between the reflectance covariates and the threeWhen comparing results estimated with kriging and
target plant parameters. Several important observationscokriging, two parameters were analyzed. Root mean

square error of prediction and the correlation between can be made from this figure. First, a higher correlation
predicted values from kriging and the actual values between the target plant variable and canopy reflec-
taken from direct plant measurements were evaluated. tance wavebands did not consistently improve reduction
As previously mentioned, validation sets of 86 sample in RMSE. Yates and Warrick (1987) found that a reduc-
points were available for the n � 30 sampling schemes. tion in kriging variance was observed as the correlation
The RMSE should be small for an unbiased and precise between the target variable and covariate increased.
prediction. As shown in Table 3, RMSE for cokriging However, in this study, two covariates were used to
was consistently lower than the RMSE for kriging, with predict percentage of grass cover and three covariates
one exception. Thus, cokriging helped improve the pre- were used to predict percentage of legume cover. For
diction of the validation sites in all the scenarios but the grid and the random sampling schemes, it appears
one. The single exception occurred for biomass sampled that use of multiple covariates resulted in larger reduc-
with the random scheme. This result may be explained tions in RMSE. This result concurred with McBratney
by the large nugget variance of biomass. Nugget vari- and Webster’s observation that using two covariates
ance refers to the variance associated with two measure- resulted in more precise cokriging estimations than a
ments located at the same point. In other words, if two single covariate (McBratney and Webster, 1983a).
measurements are located at the same point (i.e., have General trends can be drawn from Fig. 4, but it is
a separation distance of zero), one would expect them important to note that the efficacy of cokriging is more
to have very similar values, or zero variance. Measure- than a function of correlation between a covariate andments of biomass taken close to one another were quite target variable. The efficacy also includes the strengthdifferent; thus, nugget variance resulted and the semi-

of the spatial cross-correlation between the covariatevariogram could not be modeled very well. In addition,
and target variable, the geometric sampling pattern, andthe correlation of biomass with its covariate, NDVI1
the ratio of the sampling intensities of the covariate to(r � 0.43), was not highly significant. Furthermore, a
the target variable (McBratney and Webster, 1983a).random sampling scheme often has “gaps” of unsampled

It is also possible to assess other parameters indicativespace, so the prediction of biomass values was more
of vegetative quality by spectral reflectance. Assessmentreliant on the variability in neighboring covariate points
of nutritive parameters such as nitrogen and lignin con-than farther away biomass points. Cokriging reduced
centration by multispectral reflectance was examined byRMSE for biomass by approximately 50 kg ha�1 in the
Serrano et al. (2002). Using Airborne Visible/Infraredgrid sampling scheme (Table 3). While the economic
Imaging Spectrometer (AVIRIS) reflectance in chapar-impact of this result was not studied, it is worthwhile
ral vegetation, a Normalized Difference Nitrogen Indexto note.
and Normalized Difference Lignin Index were proposedRegression analyses between predicted and actual
as indices to assess N and lignin in native shrub vegeta-values showed an increase in correlation for most of the
tion (Serrano et al., 2002). Canopy N concentration ofplant variables and sampling schemes when cokriging
eight crop fields in Denmark during the vegetative pe-was implemented (Table 3). On the basis of the increase
riod was significantly correlated with the spectral reflec-in RMSE with cokriging biomass in the random scheme,
tance in the green and far-red wavebands (Boegh etthe decrease in correlation between predicted and actual

values was not surprising. The correlation between pre- al., 2002).

Table 3. Validation set root mean square errors (RMSE) of plant data prediction for kriging and cokriging the three sampling schemes.
Coefficient of determination (r2) between predicted and actual values for validation set.

Grid Triangular Random

Target variable Sample size OK† Co-K OK Co-K OK Co-K

Biomass, g DM m�2 30 RMSE‡ 81.8 76.8 (�)§ 93.2 89.5 (�) 92.0 95.2 (�)
r 2 0.23 0.26 (�) 0.08 0.06 (�) 0.07 0.02 (�)

Grass, % 30 RMSE 14.1 13.0 (�) 13.3 13.0 (�) 14.2 14.1 (�)
r 2 0.32 0.43 (�) 0.34 0.37 (�) 0.30 0.31 (�)

Legume, % 30 RMSE 13.9 12.8 (�) 12.8 12.7 (�) 13.4 12.8 (�)
r 2 0.32 0.42 (�) 0.37 0.38 (�) 0.39 0.43 (�)

† OK is ordinary kriging, Co-K is cokriging.
‡ RMSE units are specific to each plant variable.
§ Plus or minus sign in parentheses indicates an increase (�) or decrease (�) in RMSE or r2 value between OK and Co-K.
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Fig. 4. Reduction in root mean square error (RMSE) of prediction due to cokriging as a function of the absolute correlation (r ) between canopy
reflectance at covariate wavebands and the three target plant variables: biomass (Bio.), percentage of grass (Grass), and percentage of legume
(Leg.). Data is plotted for each sampling pattern.

Sampling Scheme Comparison detail than the kriged maps of each plant parameter.
The use of canopy reflectance as a covariate improvedThe mapping accuracy from cokriging was also af-
prediction of grass and legume percentage of cover infected by the sampling pattern used. Also from Fig. 4,
all three sampling schemes studied. The prediction ofit is evident that the largest reductions in RMSE because
above-ground biomass was not quite as consistent; how-of cokriging were found with the grid sampling scheme.
ever, this was probably due to the low amount of spatialThis result is probably due to the more systematic, geo-
continuity of biomass values.metric sampling of the grid scheme. Both Vauclin et al.

This study showed an overall improvement in RMSE(1983) and McBratney and Webster (1983a) found that
of unsampled sites when cokriging was implemented.cokriging consistently reduced estimation variances where
The grid sampling scheme appeared to benefit mosttarget and covariate properties were sampled in geomet-
from cokriging, but the results are inconclusive becauseric patterns. However, because only one example of
only one grid scheme (not multiple) was analyzed.each sampling scheme was used, generalizations about

each of the schemes cannot be made.
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